From 1 - 10 / 29
  • Hydrothermal and hot fractured rock (HFR) resources are prevalent in Australia. This, and evidence of risks posed by climate change are factors stimulating growth in geothermal energy exploration, proof-of-concept and demonstration power generation projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia in 2001, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 122 licence application areas covering ~ 68,000 km2. The associated work programs correspond to an investment of $570 million, a tally which excludes up-scaling and deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Most investment is focused on HFR for enhanced geothermal systems (EGS) to fuel binary power plants. At least two companies are also focused on hydrothermal resources, also to fuel binary power plants. A national EGS resource assessment and a road-map for the commercialisation of Australian EGS are expected to be published in 2008. Geoscience Australia's preliminary work suggests Australia's hot rock energy between 150oC and 5 km is roughly 1.2 billion PJ (roughly 20,000 years of Australia's primary energy use in 2005), without taking account of the renewable characteristics of hot rock EGS plays. The presentation will provide up-to-date accounts of: 1. Exploration, proof-of-concept and demonstration projects on the path to commercializing hot rock resources in Australia; 2. Government designed investment frameworks that aim to attract and facilitate progress to commercializing hot rock resources in Australia; 3. Methods adopted by regulators to meet community expectations that only safe operations (including EGS projects) will be approved by regulators; and 4. Proposed methods for the portfolio management of EGS projects vying for funding within companies, and competing for research and demonstration grants from governments.

  • This is a 5.48 minute long movie demonstrating Carbon Capture Technologies as one of the range of solutions that can help reduce greenhouse gas emissions. Using 3D Max animation we show how carbon dioxide is captured at the source of emissions (coal fired power stations for example), and permanently storing them deep underground. The movie has professional narration explaining the story, throughout.

  • CO2CRC Project 1 - Site Specific Studies for Geological Storage of carbon Dioxide Part 1: Southeast Queensland CO2 Storage Sites - Basin Desk-top, Geological Interpretation and Reservoir Simulation of Regional Model

  • A Bayesian inversion technique to determine the location and strength of trace gas emissions from a point source in open air is presented. It was tested using atmospheric measurements of nitrous oxide (N2O) and carbon dioxide (CO2) released at known rates from a source located within an array of eight evenly spaced sampling points on a 20 m radius circle. The analysis requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. The influence of varying background concentrations of ~1% for N2O and ~10% for CO2 was removed by subtracting upwind concentrations from those downwind of the source to yield only concentration enhancements. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume. The analysis localized the source to within 0.8 m of the true position and the emission rates were determined to better than 3% accuracy. This technique will be useful in assurance monitoring for geological storage of CO2 and for applications requiring knowledge of the location and rate of fugitive emissions.

  • Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.

  • Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.

  • Note: A more recent version of this product is available. This point dataset contains the major power stations in Australia including all those that feed into the electricity transmission network.

  • In July 2010 Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station (' Arcturus') in central Queensland. The facility is designed as a proto-type remotely operated `baseline monitoring station' such as could be deployed in areas that are likely targets for commercial scale carbon capture and geological storage (CCS). It is envisaged that such a station could act as a high quality reference point for later in-fill, site based, atmospheric monitoring associated with geological storage of CO2. The station uses two wavelength scanned cavity ringdown instruments to measure concentrations of carbon dioxide (CO2), methane (CH4), water vapour and the isotopic signature (?13C) of CO2. Meteorological parameters such as wind speed and wind direction are also measured. In combination with CSIRO's TAPM (The Air Pollution Model), data will be used to understand the local variations in CO2 and CH4 and the contributions of natural and anthropogenic sources in the area to this variability. The site is located in a region that supports cropping, grazing, cattle feedlotting, coal mining and gas production activities, which may be associated with fluxes of CO2 and CH4. We present in this paper some of the challenges found during the installation and operation of the station in a remote, sub-tropical environment and how these were resolved. We will also present the first results from the site coupled with preliminary modelling of the relative contribution of large point source anthropogenic emissions and their contribution to the background.

  • Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located in a paddock maintained by CSIRO Plant and Industry at Ginninderra, ACT. The design of the facility is modelled on the ZERT controlled release facility in Montana, which conducts experiments to develop capabilities and test techniques for detecting and monitoring CO2 leakage. The first phase of the installation is complete and has supported an above ground, point source, release experiment, utilising a liquid CO2 storage vessel (2.5 tonnes) with a vaporiser, mass flow controller unit with a capacity for 6 individual metered gas outlet streams, equipment shed and a gas cylinder cage. Phase 2 involved the installation of a shallow (2m depth) underground 120m horizontally drilled slotted well, in June 2011, intended to model a line source of CO2 leakage from a storage site. This presentation will detail the various activities involved in designing and installing the horizontal well, and designing a packer system to partition the well into six CO2 injection chambers. A trenchless drilling technique used for installing the slotted HDPE pipe into the bore hole will be described. The choice of well orientation based upon the effects of various factors such as topography, wind direction and ground water depth, will be discussed. It is envisaged that the facility will be ready for conducting sub-surface controlled release experiments during spring 2011.